---
title: "Geometry in affiner"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Geometry in affiner}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
### Table of Contents
* [Angle objects](#angles)
* [Trigonometry](#trigonometry)
* [2D Coordinates](#2d)
* [3D Coordinates](#3d)
* [Orthographic/Axonometric and Oblique Projections](#projection)
## Angle objects
In `{affiner}` angles are represented by the `angle()` class:
* Supports the following [angular units](https://en.wikipedia.org/wiki/Angle#Units) (note we ignore any punctuation and space characters as well as any trailing s's e.g. "half turns" will be treated as equivalent to "halfturn"):
+ "deg" or "degree"
+ "half-revolution", "half-turn", or "pi-radian"
+ "gon", "grad", "grade", or "gradian"
+ "rad" or "radian"
+ "rev", "revolution", "tr", or "turn"
* `degrees()`, `gradians()`, `pi_radians()`, `radians()`, `turns()` are convenience wrappers around `as_angle.()` that specifies the angular unit.
* One can use the `affiner_angular_unit` global option to set the default angular unit used by this package from "degrees" to "gradians", (multiples of) "pi-radians", "radians", or "turns".
* Use `is_congruent()` to check if two angles are congruent modulo full turns.
```{r angles}
library("affiner")
as_angle(90, "degrees") + turns(1)
is_congruent(degrees(180), radians(pi))
as.numeric(turns(1/3), "radians")
```
## Trigonometry
`{affiner}` provides several `angle()` class aware trigonometric functions:
* `sine()`, `cosine()`, `tangent()`, `secant()`, `cosecant()`, `cotangent()`,
* `arcsine()`, `arccosine()`, `arctangent()`, `arcsecant()`, `arccosecant()`, and `arccotangent()`.
`arcsine()` and `arccosine()` also feature a `tolerance` value so that values that exceed the `1` / `-1` cutoffs by a small tolerance are rounded to those values.
* One can also use the base S3 methods `sin()`, `cos()`, and `tan()` on `angle()` objects.
```{r trig}
library("affiner")
sin(2 * pi)
sine(degrees(360))
arctangent(x = 0, y = 1)
```
## 2D Coordinates
In `{affiner}` 2D Coordinates are represented by a `Coord2D` R6 class:
* Create `Coord2D` objects with `as_coord2d()`
* `Coord2D` R6 objects supports several affine transformation methods that can be chained:
+ `permute()`
+ `project()`
+ `reflect()`
+ `rotate()`
+ `scale()`
+ `shear()`
+ `translate()`
+ `transform()`
+ R6 method chained affine transformation matrices are auto-multiplied
so you don't need to manually multiply them for efficiency reasons.
+ `{affiner}` affine transformations are post-multiplied so affine transformations
can be applied in an intuitive order.
+ `abs()` computes Euclidean norm and `distance2d()` computes Euclidean distances
+ `convex_hull2d()` computes the convex hull.
* `range()` computes the axis-aligned bounding box ranges.
```{r 2d}
# Cartesian coordinates
library("affiner")
p <- as_coord2d(x = 1:10, y = 1:10)
print(p)
p2 <- p$
clone()$
scale(x = 0.5)$
rotate(degrees(90))$
reflect(as_line2d("y-axis"))$
translate(as_coord2d(x = 0.5, y = 0.5))$
print()
# Polar coordinates
theta <- degrees(seq(0, 300, by = 60))
radius <- 1
p <- as_coord2d(theta, radius = radius)
is_congruent(as_angle(p), theta) |> all()
is_congruent(abs(p), radius) |> all()
```
## 3D Coordinates
In `{affiner}` 3D Coordinates are represented by a `Coord3D` R6 class:
* Create `Coord3D` objects with `as_coord3d()`
* `Coord3D` R6 objects supports several affine transformation methods that can be chained:
+ `permute()`
+ `project()`
+ `reflect()`
+ `rotate()`
+ `scale()`
+ `shear()`
+ `translate()`
+ `transform()`
+ R6 method chained affine transformation matrices are auto-multiplied
so you don't need to manually pre-multiply them for efficiency reasons.
+ `{affiner}` affine transformations are post-multiplied so affine transformations
can be applied in an intuitive order.
+ `abs()` computes Euclidean norm and `distance3d()` computes Euclidean distances
* `range()` computes the axis-aligned bounding box ranges.
* `cross_product3d()` computes cross products (`*` computes inner products).
```{r 3d}
# Cartesian coordinates
library("affiner")
p <- as_coord3d(x = 1:10, y = 1:10, z = 1:10)
print(p)
p2 <- p$
clone()$
scale(z = 0.5)$
rotate(axis = as_coord3d("z-axis"), theta = degrees(90))$
reflect(as_plane3d("yz-plane"))$
shear(xy_shear = 0.5)$
translate(as_coord3d(x = 0.5, y = 0.5, z = 0.5))$
print()
# Spherical coordinates
inclination <- as_angle(p, type = "inclination")
azimuth <- as_angle(p, type = "azimuth")
radius <- abs(p)
ps <- as_coord3d(azimuth, radius = radius, inclination = inclination)
all.equal(p, ps)
# Cylindrical coordinates
radius <- as_coord2d(p, plane = "xy-plane") |> abs()
pc <- as_coord3d(azimuth, radius = radius, z = p$z)
all.equal(p, pc)
```
## Orthographic/Axonometric and Oblique Projections
`{affiner}` can project `Coord3D` objects to `Coord2D` objects using orthographic/axonometric and oblique projections:
* For a multiview/primary orthographic projection onto the xy-plane use `as_coord2d(x)`
* For a multiview/primary orthographic projection onto the xz-plane use `as_coord2d(x, permutation = "xzy")`
* For a "cabinet" oblique projection onto the xy-plane use `as_coord2d(x, scale = 0.5)`
* For a "cabinet" oblique projection onto the xz-plane use `as_coord2d(x, permutation = "xzy", scale = 0.5)`
* For other oblique projections manipulate the `scale` parameter (usually from 0.5 to 1.0) and the `alpha` angle parameter
(usually from 30° to 45°).
* For one "isometric" axonometric projection one can use
```
x$
clone()$
translate(-mean(x)$
rotate("z-axis", degrees(45))$
rotate("x-axis", degrees(-90 + 35.264)) |>
as_coord2d()
```
* Other axonometric projections can be achieved with the right 3D rotations
* See [`vignette("affiner", package = "affiner")`](affiner.html) for some visual examples
* Recall one can use "scale" affine transformation to flip signs of x/y/z axes and "permute" affine transformation to switch order of x/y/z coordinates