In {affiner}
angles are represented by the
angle()
class:
Supports the following angular units (note we ignore any punctuation and space characters as well as any trailing s’s e.g. “half turns” will be treated as equivalent to “halfturn”):
degrees()
, gradians()
,
pi_radians()
, radians()
, turns()
are convenience wrappers around as_angle.()
that specifies
the angular unit.
One can use the affiner_angular_unit
global option
to set the default angular unit used by this package from “degrees” to
“gradians”, (multiples of) “pi-radians”, “radians”, or “turns”.
Use is_congruent()
to check if two angles are
congruent modulo full turns.
## <angle<degrees>[1]>
## [1] 450°
## [1] TRUE
## [1] 2.094395
{affiner}
provides several angle()
class
aware trigonometric functions:
sine()
, cosine()
, tangent()
,
secant()
, cosecant()
,
cotangent()
,arcsine()
, arccosine()
,
arctangent()
, arcsecant()
,
arccosecant()
, and arccotangent()
.
arcsine()
and arccosine()
also feature a
tolerance
value so that values that exceed the
1
/ -1
cutoffs by a small tolerance are
rounded to those values.sin()
,
cos()
, and tan()
on angle()
objects.## [1] -2.449294e-16
## [1] 0
## <angle<degrees>[1]>
## [1] 90°
In {affiner}
2D Coordinates are represented by a
Coord2D
R6 class:
Create Coord2D
objects with
as_coord2d()
Coord2D
R6 objects supports several affine
transformation methods that can be chained:
permute()
project()
reflect()
rotate()
scale()
shear()
translate()
transform()
{affiner}
affine transformations are post-multiplied so
affine transformations can be applied in an intuitive order.abs()
computes Euclidean norm and
distance2d()
computes Euclidean distancesconvex_hull2d()
computes the convex hull.range()
computes the axis-aligned bounding box
ranges.## <Coord2D[10]>
## x y w
## [1,] 1 1 1
## [2,] 2 2 1
## [3,] 3 3 1
## [4,] 4 4 1
## [5,] 5 5 1
## [6,] 6 6 1
## [7,] 7 7 1
## [8,] 8 8 1
## [9,] 9 9 1
## [10,] 10 10 1
p2 <- p$
clone()$
scale(x = 0.5)$
rotate(degrees(90))$
reflect(as_line2d("y-axis"))$
translate(as_coord2d(x = 0.5, y = 0.5))$
print()
## <Coord2D[10]>
## x y w
## [1,] 1.0 1.0 1
## [2,] 1.5 1.5 1
## [3,] 2.0 2.0 1
## [4,] 2.5 2.5 1
## [5,] 3.0 3.0 1
## [6,] 3.5 3.5 1
## [7,] 4.0 4.0 1
## [8,] 4.5 4.5 1
## [9,] 5.0 5.0 1
## [10,] 5.5 5.5 1
# Polar coordinates
theta <- degrees(seq(0, 300, by = 60))
radius <- 1
p <- as_coord2d(theta, radius = radius)
is_congruent(as_angle(p), theta) |> all()
## [1] TRUE
## [1] TRUE
In {affiner}
3D Coordinates are represented by a
Coord3D
R6 class:
Create Coord3D
objects with
as_coord3d()
Coord3D
R6 objects supports several affine
transformation methods that can be chained:
permute()
project()
reflect()
rotate()
scale()
shear()
translate()
transform()
{affiner}
affine transformations are post-multiplied so
affine transformations can be applied in an intuitive order.abs()
computes Euclidean norm and
distance3d()
computes Euclidean distancesrange()
computes the axis-aligned bounding box
ranges.cross_product3d()
computes cross products
(*
computes inner products). If R >= 4.4.0 you may also
use crossprod()
.## <Coord3D[10]>
## x y z w
## [1,] 1 1 1 1
## [2,] 2 2 2 1
## [3,] 3 3 3 1
## [4,] 4 4 4 1
## [5,] 5 5 5 1
## [6,] 6 6 6 1
## [7,] 7 7 7 1
## [8,] 8 8 8 1
## [9,] 9 9 9 1
## [10,] 10 10 10 1
p2 <- p$
clone()$
scale(z = 0.5)$
rotate(axis = as_coord3d("z-axis"), theta = degrees(90))$
reflect(as_plane3d("yz-plane"))$
shear(xy_shear = 0.5)$
translate(as_coord3d(x = 0.5, y = 0.5, z = 0.5))$
print()
## <Coord3D[10]>
## x y z w
## [1,] 2.0 1.5 1.0 1
## [2,] 3.5 2.5 1.5 1
## [3,] 5.0 3.5 2.0 1
## [4,] 6.5 4.5 2.5 1
## [5,] 8.0 5.5 3.0 1
## [6,] 9.5 6.5 3.5 1
## [7,] 11.0 7.5 4.0 1
## [8,] 12.5 8.5 4.5 1
## [9,] 14.0 9.5 5.0 1
## [10,] 15.5 10.5 5.5 1
# Spherical coordinates
inclination <- as_angle(p, type = "inclination")
azimuth <- as_angle(p, type = "azimuth")
radius <- abs(p)
ps <- as_coord3d(azimuth, radius = radius, inclination = inclination)
all.equal(p, ps)
## [1] TRUE
# Cylindrical coordinates
radius <- as_coord2d(p, plane = "xy-plane") |> abs()
pc <- as_coord3d(azimuth, radius = radius, z = p$z)
all.equal(p, pc)
## [1] TRUE
{affiner}
can project Coord3D
objects to
Coord2D
objects using orthographic/axonometric and oblique
projections:
For a multiview/primary orthographic projection onto the xy-plane
use as_coord2d(x)
For a multiview/primary orthographic projection onto the xz-plane
use as_coord2d(x, permutation = "xzy")
For a “cabinet” oblique projection onto the xy-plane use
as_coord2d(x, scale = 0.5)
For a “cabinet” oblique projection onto the xz-plane use
as_coord2d(x, permutation = "xzy", scale = 0.5)
For other oblique projections manipulate the scale
parameter (usually from 0.5 to 1.0) and the alpha
angle
parameter (usually from 30° to 45°).
For one “isometric” axonometric projection one can use
x$
clone()$
translate(-mean(x)$
rotate("z-axis", degrees(45))$
rotate("x-axis", degrees(-90 + 35.264)) |>
as_coord2d()
Other axonometric projections can be achieved with the right 3D rotations
See vignette("affiner", package = "affiner")
for some visual examples
Recall one can use “scale” affine transformation to flip signs of x/y/z axes and “permute” affine transformation to switch order of x/y/z coordinates