Package 'affiner'

Title: A Finer Way to Render 3D Illustrated Objects in 'grid' Using Affine Transformations
Description: Dilate, permute, project, reflect, rotate, shear, and translate 2D and 3D points. Supports parallel projections including oblique projections such as the cabinet projection as well as axonometric projections such as the isometric projection. Use 'grid's "affine transformation" feature to render illustrated flat surfaces.
Authors: Trevor L. Davis [aut, cre]
Maintainer: Trevor L. Davis <[email protected]>
License: MIT + file LICENSE
Version: 0.1.4-1
Built: 2025-01-10 04:32:35 UTC
Source: https://github.com/trevorld/affiner

Help Index


affiner: A Finer Way to Render 3D Illustrated Objects in 'grid' Using Affine Transformations

Description

logo

Dilate, permute, project, reflect, rotate, shear, and translate 2D and 3D points. Supports parallel projections including oblique projections such as the cabinet projection as well as axonometric projections such as the isometric projection. Use 'grid's "affine transformation" feature to render illustrated flat surfaces.

Package options

The following affiner function arguments may be set globally via base::options():

affiner_angular_unit

The default for the unit argument used by angle() and as_angle(). The default for this option is "degrees".

affiner_grid_unit

The default for the unit argument used by affine_settings(). The default for this option is "inches".

The following cli options may also be of interest:

cli.unicode

Whether UTF-8 character support should be assumed. Along with l10n_info() used to determine the default of the use_unicode argument of format.angle() and print.angle().

Author(s)

Maintainer: Trevor L. Davis [email protected] (ORCID)

See Also

Useful links:


Compute Euclidean norm

Description

abs() computes the Euclidean norm for Coord2D class objects and Coord3D class objects.

Usage

## S3 method for class 'Coord1D'
abs(x)

## S3 method for class 'Coord2D'
abs(x)

## S3 method for class 'Coord3D'
abs(x)

Arguments

x

A Coord2D class object or Coord2D class object.

Value

A numeric vector

Examples

z <- complex(real = 1:4, imaginary = 1:4)
  p <- as_coord2d(z)
  abs(p) # Euclidean norm
  # Less efficient ways to calculate same Euclidean norms
  sqrt(p * p) # `*` dot product
  distance2d(p, as_coord2d(0, 0, 0))

  # In {base} R `abs()` calculates Euclidean norm of complex numbers
  all.equal(abs(p), abs(z))
  all.equal(Mod(p), Mod(z))

  p3 <- as_coord3d(x = 1:4, y = 1:4, z = 1:4)
  abs(p3)

Compute grid affine transformation feature viewports and transformation functions

Description

affine_settings() computes grid group affine transformation feature viewport and transformation function settings given the (x,y) coordinates of the corners of the affine transformed "viewport" one wishes to draw in.

Usage

affine_settings(
  xy = data.frame(x = c(0, 0, 1, 1), y = c(1, 0, 0, 1)),
  unit = getOption("affiner_grid_unit", "inches")
)

Arguments

xy

An R object with named elements x and y representing the (x,y) coordinates of the affine transformed "viewport" one wishes to draw in. The (x,y) coordinates of the "viewport" should be in "upper left", "lower left", "lower right", and "upper right" order (this ordering should be from the perspective of before the "affine transformation" of the "viewport").

unit

Which grid::unit() to assume the xy "x" and "y" coordinates are expressed in.

Value

A named list with the following group affine transformation feature viewport and functions settings:

transform

An affine transformation function to pass to affineGrob() or useGrob(). If getRversion() is less than "4.2.0" will instead be NULL.

vp

A grid::viewport() object to pass to affineGrob() or useGrob().

sx

x-axis sx factor

flipX

whether the affine transformed "viewport" is "flipped" horizontally

x

x-coordinate for viewport

y

y-coordinate for viewport

width

Width of viewport

height

Height of viewport

default.units

Default grid::unit() for viewport

angle

angle for viewport

Usage in other packages

To avoid taking a dependency on affiner you may copy the source of affine_settings() into your own package under the permissive Unlicense. Either use usethis::use_standalone("trevorld/affiner", "standalone-affine-settings.r") or copy the file standalone-affine-settings.r into your R directory and add grid to the Imports of your DESCRIPTION file.

See Also

Intended for use with affineGrob() and grid::useGrob(). See https://www.stat.auckland.ac.nz/~paul/Reports/GraphicsEngine/groups/groups.html for more information about the group affine transformation feature.

Examples

if (require("grid")) {
  grob <- grobTree(rectGrob(gp = gpar(fill = "blue", col = NA)),
                   circleGrob(gp=gpar(fill="yellow", col = NA)),
                   textGrob("RSTATS", gp=gpar(fontsize=32)))
  grid.newpage()
  pushViewport(viewport(width=unit(4, "in"), height=unit(2, "in")))
  grid.draw(grob)
  popViewport()
}
if (require("grid") &&
    getRversion() >= "4.2.0" &&
    isTRUE(dev.capabilities()$transformations)) {
  # Only works if active graphics device supports affine transformations
  # such as `png(type="cairo")` on R 4.2+
  vp_define <- viewport(width=unit(2, "in"), height=unit(2, "in"))
  settings <- affine_settings(xy = list(x = c(1/3, 0/3, 2/3, 3/3),
                                        y = c(2/3, 1/3, 1/3, 2/3)),
                              unit = "snpc")
  affine <- affineGrob(grob,
                       vp_define=vp_define,
                       transform = settings$transform,
                       vp_use = settings$vp)
  grid.newpage()
  grid.draw(affine)
}
if (require("grid") &&
    getRversion() >= "4.2.0" &&
    isTRUE(dev.capabilities()$transformations)) {
  # Only works if active graphics device supports affine transformations
  # such as `png(type="cairo")` on R 4.2+
  settings <- affine_settings(xy = list(x = c(3/3, 2/3, 0/3, 1/3),
                                        y = c(2/3, 1/3, 1/3, 2/3)),
                              unit = "snpc")
  affine <- affineGrob(grob,
                       vp_define=vp_define,
                       transform = settings$transform,
                       vp_use = settings$vp)
  grid.newpage()
  grid.draw(affine)
}

Affine transformation grob

Description

affineGrob() is a grid grob function to facilitate using the group affine transformation features introduced in R 4.2.

Usage

affineGrob(
  grob,
  vp_define = NULL,
  transform = NULL,
  vp_use = NULL,
  name = NULL,
  gp = grid::gpar(),
  vp = NULL
)

grid.affine(...)

Arguments

grob

A grid grob to perform affine transformations on. Passed to grid::defineGrob() as its src argument.

vp_define

grid::viewport() to define grid group in. Passed to grid::defineGrob() as its vp argument. This will cumulative with the current viewport and the vp argument (if any), if this cumulative viewport falls outside the graphics device drawing area this grob may be clipped on certain graphics devices.

transform

An affine transformation function. If NULL default to grid::viewportTransform(). Passed to grid::useGrob() as its transform argument.

vp_use

grid::viewport() passed to grid::useGrob() as its vp argument.

name

A character identifier (for grid).

gp

A grid::gpar() object.

vp

A grid::viewport() object (or NULL).

...

Passed to affineGrob()

Details

Not all graphics devices provided by grDevices or other R packages support the affine transformation feature introduced in R 4.2. If isTRUE(getRversion() >= '4.2.0') then the active graphics device should support this feature if isTRUE(grDevices::dev.capabilities()$transformations). In particular the following graphics devices should support the affine transformation feature:

  • R's grDevices::pdf() device

  • R's 'cairo' devices e.g. grDevices::cairo_pdf(), grDevices::png(type = 'cairo'), grDevices::svg(), grDevices::x11(type = 'cairo'), etc. If isTRUE(capabilities('cairo')) then R was compiled with support for the 'cairo' devices .

  • R's 'quartz' devices (since R 4.3.0) e.g. grDevices::quartz(), grDevices::png(type = 'quartz'), etc. If isTRUE(capabilities('aqua')) then R was compiled with support for the 'quartz' devices (generally only TRUE on macOS systems).

  • ragg's devices (since v1.3.0) e.g. ragg::agg_png(), ragg::agg_capture(), etc.

Value

A grid::gTree() (grob) object of class "affine". As a side effect grid.affine() draws to the active graphics device.

See Also

See affine_settings() for computing good transform and vp_use settings. See https://www.stat.auckland.ac.nz/~paul/Reports/GraphicsEngine/groups/groups.html for more information about the group affine transformation feature. See isocubeGrob() which wraps this function to render isometric cubes.

Examples

if (require("grid")) {
  grob <- grobTree(rectGrob(gp = gpar(fill = "blue", col = NA)),
                   circleGrob(gp=gpar(fill="yellow", col = NA)),
                   textGrob("RSTATS", gp=gpar(fontsize=32)))
  grid.newpage()
  pushViewport(viewport(width=unit(4, "in"), height=unit(2, "in")))
  grid.draw(grob)
  popViewport()
}

if (require("grid") &&
    getRversion() >= "4.2.0" &&
    isTRUE(dev.capabilities()$transformations)) {
  # Only works if active graphics device supports affine transformations
  # such as `png(type="cairo")` on R 4.2+
  vp_define <- viewport(width=unit(2, "in"), height=unit(2, "in"))
  affine <- affineGrob(grob, vp_define=vp_define)
  grid.newpage()
  pushViewport(viewport(width=unit(4, "in"), height=unit(2, "in")))
  grid.draw(affine)
  popViewport()
}
if (require("grid") &&
    getRversion() >= "4.2.0" &&
    isTRUE(dev.capabilities()$transformations)) {
  # Only works if active graphics device supports affine transformations
  # such as `png(type="cairo")` on R 4.2+
  settings <- affine_settings(xy = list(x = c(3/3, 2/3, 0/3, 1/3),
                                        y = c(2/3, 1/3, 1/3, 2/3)),
                              unit = "snpc")
  affine <- affineGrob(grob,
                       vp_define = vp_define,
                       transform = settings$transform,
                       vp_use = settings$vp)
  grid.newpage()
  grid.draw(affine)
}

Get affiner options

Description

affiner_options() returns the affiner package's global options.

Usage

affiner_options(..., default = FALSE)

Arguments

...

affiner package options using name = value. The return list will use any of these instead of the current/default values.

default

If TRUE return the default values instead of current values.

Value

A list of option values. Note this function does not set option values itself but this list can be passed to options(), withr::local_options(), or withr::with_options().

See Also

affiner for a high-level description of relevant global options.

Examples

affiner_options()

  affiner_options(default = TRUE)

  affiner_options(affiner_angular_unit = "pi-radians")

Angle vectors

Description

angle() creates angle vectors with user specified angular unit. around as_angle() for those angular units.

Usage

angle(x = numeric(), unit = getOption("affiner_angular_unit", "degrees"))

degrees(x)

gradians(x)

pi_radians(x)

radians(x)

turns(x)

Arguments

x

An angle vector or an object to convert to it (such as a numeric vector)

unit

A string of the desired angular unit. Supports the following strings (note we ignore any punctuation and space characters as well as any trailing s's e.g. "half turns" will be treated as equivalent to "halfturn"):

  • "deg" or "degree"

  • "half-revolution", "half-turn", or "pi-radian"

  • "gon", "grad", "grade", or "gradian"

  • "rad" or "radian"

  • "rev", "revolution", "tr", or "turn"

Value

A numeric vector of class "angle". Its "unit" attribute is a standardized string of the specified angular unit.

See Also

as_angle(), angular_unit(), and angle-methods. https://en.wikipedia.org/wiki/Angle#Units for more information about angular units.

Examples

# Different representations of the "same" angle
  angle(180, "degrees")
  angle(pi, "radians")
  angle(0.5, "turns")
  angle(200, "gradians")
  pi_radians(1)

  a1 <- angle(180, "degrees")
  angular_unit(a1)
  is_angle(a1)
  as.numeric(a1, "radians")
  cos(a1)

  a2 <- as_angle(a1, "radians")
  angular_unit(a2)
  is_congruent(a1, a2)

Implemented base methods for angle vectors

Description

We implemented methods for several base generics for the angle() vectors.

Usage

## S3 method for class 'angle'
as.double(x, unit = angular_unit(x), ...)

## S3 method for class 'angle'
as.complex(x, modulus = 1, ...)

## S3 method for class 'angle'
format(x, unit = angular_unit(x), ..., use_unicode = is_utf8_output())

## S3 method for class 'angle'
print(x, unit = angular_unit(x), ..., use_unicode = is_utf8_output())

## S3 method for class 'angle'
abs(x)

Arguments

x

angle() vector

unit

A string of the desired angular unit. Supports the following strings (note we ignore any punctuation and space characters as well as any trailing s's e.g. "half turns" will be treated as equivalent to "halfturn"):

  • "deg" or "degree"

  • "half-revolution", "half-turn", or "pi-radian"

  • "gon", "grad", "grade", or "gradian"

  • "rad" or "radian"

  • "rev", "revolution", "tr", or "turn"

...

Passed to print.default()

modulus

Numeric vector representing the complex numbers' modulus

use_unicode

If TRUE use Unicode symbols as appropriate.

Details

  • Mathematical Ops (in particular + and -) for two angle vectors will (if necessary) set the second vector's angular_unit() to match the first.

  • as.numeric() takes a unit argument which can be used to convert angles into other angular units e.g. angle(x, "degrees") |> as.numeric("radians") to cast a numeric vector x from degrees to radians.

  • abs() will calculate the angle modulo full turns.

  • Use is_congruent() to test if two angles are congruent instead of == or all.equal().

  • Not all implemented methods are documented here and since angle() is a numeric() class many other S3 generics besides the explicitly implemented ones should also work with it.

Value

Typical values as usually returned by these base generics.

Examples

# Two "congruent" angles
  a1 <- angle(180, "degrees")
  a2 <- angle(pi, "radians")

  print(a1)
  print(a1, unit = "radians")
  print(a1, unit = "pi-radians")

  cos(a1)
  sin(a1)
  tan(a1)

  # mathematical operations will coerce second `angle()` object to
  # same `angular_unit()` as the first one
  a1 + a2
  a1 - a2

  as.numeric(a1)
  as.numeric(a1, "radians")
  as.numeric(a1, "turns")

  # Use `is_congruent()` to check if two angles are "congruent"
  a1 == a2
  isTRUE(all.equal(a1, a2))
  is_congruent(a1, a2)
  is_congruent(a1, a2, mod_turns = FALSE)
  a3 <- angle(-180, "degrees") # Only congruent modulus full turns
  a1 == a3
  isTRUE(all.equal(a1, a2))
  is_congruent(a1, a3)
  is_congruent(a1, a3, mod_turns = FALSE)

Get/set angular unit of angle vectors

Description

angular_unit() gets/sets the angular unit of angle() vectors.

Usage

angular_unit(x)

angular_unit(x) <- value

Arguments

x

An angle() vector

value

A string of the desired angular unit. See angle() for supported strings.

Value

angular_unit() returns a string of x's angular unit.

Examples

a <- angle(seq(0, 360, by = 90), "degrees")
angular_unit(a)
print(a)
angular_unit(a) <- "turns"
angular_unit(a)
print(a)

Cast to angle vector

Description

as_angle() casts to an angle() vector

Usage

as_angle(x, unit = getOption("affiner_angular_unit", "degrees"), ...)

## S3 method for class 'angle'
as_angle(x, unit = getOption("affiner_angular_unit", "degrees"), ...)

## S3 method for class 'character'
as_angle(x, unit = getOption("affiner_angular_unit", "degrees"), ...)

## S3 method for class 'complex'
as_angle(x, unit = getOption("affiner_angular_unit", "degrees"), ...)

## S3 method for class 'Coord2D'
as_angle(x, unit = getOption("affiner_angular_unit", "degrees"), ...)

## S3 method for class 'Coord3D'
as_angle(
  x,
  unit = getOption("affiner_angular_unit", "degrees"),
  type = c("azimuth", "inclination"),
  ...
)

## S3 method for class 'Line2D'
as_angle(x, unit = getOption("affiner_angular_unit", "degrees"), ...)

## S3 method for class 'Plane3D'
as_angle(
  x,
  unit = getOption("affiner_angular_unit", "degrees"),
  type = c("azimuth", "inclination"),
  ...
)

## S3 method for class 'numeric'
as_angle(x, unit = getOption("affiner_angular_unit", "degrees"), ...)

Arguments

x

An R object to convert to a angle() vector

unit

A string of the desired angular unit. Supports the following strings (note we ignore any punctuation and space characters as well as any trailing s's e.g. "half turns" will be treated as equivalent to "halfturn"):

  • "deg" or "degree"

  • "half-revolution", "half-turn", or "pi-radian"

  • "gon", "grad", "grade", or "gradian"

  • "rad" or "radian"

  • "rev", "revolution", "tr", or "turn"

...

Further arguments passed to or from other methods

type

Use "azimuth" to calculate the azimuthal angle and "inclination" to calculate the inclination angle aka polar angle.

Value

An angle() vector

Examples

as_angle(angle(pi, "radians"), "pi-radians")
as_angle(complex(real = 0, imaginary = 1), "degrees")
as_angle(as_coord2d(x = 0, y = 1), "turns")
as_angle(200, "gradians")

Cast to coord1d object

Description

as_coord1d() casts to a Coord1D class object

Usage

as_coord1d(x, ...)

## S3 method for class 'character'
as_coord1d(x, ...)

## S3 method for class 'Coord2D'
as_coord1d(
  x,
  permutation = c("xy", "yx"),
  ...,
  line = as_line2d("x-axis"),
  scale = 0
)

## S3 method for class 'data.frame'
as_coord1d(x, ...)

## S3 method for class 'list'
as_coord1d(x, ...)

## S3 method for class 'matrix'
as_coord1d(x, ...)

## S3 method for class 'numeric'
as_coord1d(x, ...)

## S3 method for class 'Coord1D'
as_coord1d(x, ...)

## S3 method for class 'Point1D'
as_coord1d(x, ...)

Arguments

x

An object that can be cast to a Coord1D class object such as a numeric vector of x-coordinates.

...

Further arguments passed to or from other methods

permutation

Either "xy" (no permutation) or "yx" (permute x and y axes)

line

A Line2D object of length one representing the line you with to reflect across or project to or an object coercible to one by as_line2d(line, ...) such as "x-axis" or "y-axis".

scale

Oblique projection scale factor. A degenerate 0 value indicates an orthogonal projection.

Value

A Coord1D class object

Examples

as_coord1d(x = rnorm(10))

Cast to coord2d object

Description

as_coord2d() casts to a Coord2D class object

Usage

as_coord2d(x, ...)

## S3 method for class 'angle'
as_coord2d(x, radius = 1, ...)

## S3 method for class 'character'
as_coord2d(x, ...)

## S3 method for class 'complex'
as_coord2d(x, ...)

## S3 method for class 'Coord3D'
as_coord2d(
  x,
  permutation = c("xyz", "xzy", "yxz", "yzx", "zyx", "zxy"),
  ...,
  plane = as_plane3d("xy-plane"),
  scale = 0,
  alpha = angle(45, "degrees")
)

## S3 method for class 'data.frame'
as_coord2d(x, ...)

## S3 method for class 'list'
as_coord2d(x, ...)

## S3 method for class 'matrix'
as_coord2d(x, ...)

## S3 method for class 'numeric'
as_coord2d(x, y = rep_len(0, length(x)), ...)

## S3 method for class 'Coord2D'
as_coord2d(x, ...)

Arguments

x

An object that can be cast to a Coord2D class object such as a matrix or data frame of coordinates.

...

Further arguments passed to or from other methods

radius

A numeric vector of radial distances.

permutation

Either "xyz" (no permutation), "xzy" (permute y and z axes), "yxz" (permute x and y axes), "yzx" (x becomes z, y becomes x, z becomes y), "zxy" (x becomes y, y becomes z, z becomes x), "zyx" (permute x and z axes). This permutation is applied before the (oblique) projection.

plane

A Plane3D class object representing the plane you wish to project to or an object coercible to one using as_plane3d(plane, ...) such as "xy-plane", "xz-plane", or "yz-plane".

scale

Oblique projection foreshortening scale factor. A (degenerate) 0 value indicates an orthographic projection. A value of 0.5 is used by a “cabinet projection” while a value of 1.0 is used by a “cavalier projection”.

alpha

Oblique projection angle (the angle the third axis is projected going off at). An angle() object or one coercible to one with as_angle(alpha, ...). Popular angles are 45 degrees, 60 degrees, and arctangent(2) degrees.

y

Numeric vector of y-coordinates to be used.

Value

A Coord2D class object

Examples

df <- data.frame(x = sample.int(10, 3),
                 y = sample.int(10, 3))
as_coord2d(df)
as_coord2d(complex(real = 3, imaginary = 2))
as_coord2d(angle(90, "degrees"), radius = 2)
as_coord2d(as_coord3d(1, 2, 2), alpha = degrees(90), scale = 0.5)

Cast to coord3d object

Description

as_coord3d() casts to a Coord3D class object

Usage

as_coord3d(x, ...)

## S3 method for class 'angle'
as_coord3d(x, radius = 1, inclination = NULL, z = NULL, ...)

## S3 method for class 'character'
as_coord3d(x, ...)

## S3 method for class 'data.frame'
as_coord3d(x, ..., z = NULL)

## S3 method for class 'list'
as_coord3d(x, ..., z = NULL)

## S3 method for class 'matrix'
as_coord3d(x, ...)

## S3 method for class 'numeric'
as_coord3d(x, y = rep_len(0, length(x)), z = rep_len(0, length(x)), ...)

## S3 method for class 'Coord3D'
as_coord3d(x, ...)

## S3 method for class 'Coord2D'
as_coord3d(x, z = rep_len(0, length(x)), ...)

Arguments

x

An object that can be cast to a Coord3D class object such as a matrix or data frame of coordinates.

...

Further arguments passed to or from other methods

radius

A numeric vector. If inclination is not NULL represents spherical distances of spherical coordinates and if z is not NULL represents radial distances of cylindrical coordinates.

inclination

Spherical coordinates inclination angle aka polar angle. x represents the azimuth aka azimuthal angle.

z

Numeric vector of z-coordinates to be used

y

Numeric vector of y-coordinates to be used if hasName(x, "z") is FALSE.

Value

A Coord3D class object

Examples

as_coord3d(x = 1, y = 2, z = 3)
df <- data.frame(x = sample.int(10, 3),
                 y = sample.int(10, 3),
                 z = sample.int(10, 3))
as_coord3d(df)
# Cylindrical coordinates
as_coord3d(degrees(90), z = 1, radius = 1)
# Spherical coordinates
as_coord3d(degrees(90), inclination = degrees(90), radius = 1)

Cast to Line2D object

Description

as_line2d() casts to a Line2D object.

Usage

as_line2d(...)

## S3 method for class 'numeric'
as_line2d(a, b, c, ...)

## S3 method for class 'angle'
as_line2d(theta, p1 = as_coord2d("origin"), ...)

## S3 method for class 'character'
as_line2d(x, ...)

## S3 method for class 'Coord2D'
as_line2d(normal, p1 = as_coord3d("origin"), p2, ...)

## S3 method for class 'Line2D'
as_line2d(line, ...)

## S3 method for class 'Point1D'
as_line2d(point, b = 0, ...)

Arguments

...

Passed to other function such as as_coord2d().

a, b, c

Numeric vectors that parameterize the line via the equation a * x + b * y + c = 0. Note if y = m * x + b then m * x + 1 * y + -b = 0.

theta

Angle of the line represented by an angle() vector.

p1

Point on the line represented by a Coord2D class object.

x

A (character) vector to be cast to a Line2D object

normal

Normal vector to the line represented by a Coord2D class object. p2 should be missing.

p2

Another point on the line represented by a Coord2D class object.

line

A Line2D object

point

A Point1D object

Examples

p1 <- as_coord2d(x = 5, y = 10)
p2 <- as_coord2d(x = 7, y = 12)
theta <- degrees(45)
as_line2d(theta, p1)
as_line2d(p1, p2)

Cast to Plane3D object

Description

as_plane3d() casts to a Plane3D object.

Usage

as_plane3d(...)

## S3 method for class 'numeric'
as_plane3d(a, b, c, d, ...)

## S3 method for class 'character'
as_plane3d(x, ...)

## S3 method for class 'Coord3D'
as_plane3d(normal, p1 = as_coord3d("origin"), p2, p3, ...)

## S3 method for class 'Plane3D'
as_plane3d(plane, ...)

## S3 method for class 'Point1D'
as_plane3d(point, b = 0, c = 0, ...)

## S3 method for class 'Line2D'
as_plane3d(line, c = 0, ...)

Arguments

...

Passed to other function such as as_coord2d().

a, b, c, d

Numeric vectors that parameterize the plane via the equation a * x + b * y + c * z + d = 0.

x

A (character) vector to be cast to a Plane3D object

normal

Normal vector to the plane represented by a Coord3D class object. p2 and p3 should be missing.

p1

Point on the plane represented by a Coord3D class object.

p2, p3

Points on the plane represented by Coord3D class objects. normal should be missing.

plane

A Plane3D object

point

A Point1D object

line

A Line2D object


Cast to Point1D object

Description

as_point1d() casts to a Point1D object.

Usage

as_point1d(...)

## S3 method for class 'numeric'
as_point1d(a, b, ...)

## S3 method for class 'character'
as_point1d(x, ...)

## S3 method for class 'Coord1D'
as_point1d(normal, ...)

## S3 method for class 'Point1D'
as_point1d(point, ...)

Arguments

...

Passed to other function such as as_coord2d().

a, b

Numeric vectors that parameterize the point via the equation a * x + b = 0. Note this means that x = -b / a.

x

A (character) vector to be cast to a Point1D object

normal

Coord1D class object.

point

A Point1D object

Examples

p1 <- as_point1d(a = 1, b = 0)

Cast to 1D affine transformation matrix

Description

as_transform1d() casts to a transform1d() affine transformation matrix

Usage

as_transform1d(x, ...)

## S3 method for class 'transform1d'
as_transform1d(x, ...)

## Default S3 method:
as_transform1d(x, ...)

Arguments

x

An object that can be cast to a

...

Further arguments passed to or from other methods

Value

A transform1d() object

Examples

m <- diag(2L)
as_transform1d(m)

Cast to 2D affine transformation matrix

Description

as_transform2d() casts to a transform2d() affine transformation matrix

Usage

as_transform2d(x, ...)

## S3 method for class 'transform2d'
as_transform2d(x, ...)

## Default S3 method:
as_transform2d(x, ...)

Arguments

x

An object that can be cast to a

...

Further arguments passed to or from other methods

Value

A transform2d() object

Examples

m <- diag(3L)
as_transform2d(m)

Cast to 3D affine transformation matrix

Description

as_transform3d() casts to a transform3d() affine transformation matrix

Usage

as_transform3d(x, ...)

## S3 method for class 'transform3d'
as_transform3d(x, ...)

## Default S3 method:
as_transform3d(x, ...)

Arguments

x

An object that can be cast to a

...

Further arguments passed to or from other methods

Value

A transform3d() object

Examples

m <- diag(4L)
as_transform3d(m)

Compute axis-aligned ranges

Description

range() computes axis-aligned ranges for Coord1D, Coord2D, and Coord3D class objects.

Usage

## S3 method for class 'Coord1D'
range(..., na.rm = FALSE)

## S3 method for class 'Coord2D'
range(..., na.rm = FALSE)

## S3 method for class 'Coord3D'
range(..., na.rm = FALSE)

Arguments

...

Coord1D, Coord2D, or Coord3D object(s)

na.rm

logical, indicating if NA's should be omitted

Value

Either a Coord1D, Coord2D, or Coord3D object of length two. The first element will have the minimum x/y(/z) coordinates and the second element will have the maximum x/y(/z) coordinates of the axis-aligned ranges.

Examples

range(as_coord2d(rnorm(5), rnorm(5)))
range(as_coord3d(rnorm(5), rnorm(5), rnorm(5)))

Compute centroids of coordinates

Description

mean()computes centroids for Coord1D, Coord2D, and Coord3D class objects

Usage

## S3 method for class 'Coord1D'
mean(x, ...)

## S3 method for class 'Coord2D'
mean(x, ...)

## S3 method for class 'Coord3D'
mean(x, ...)

Arguments

x

A Coord1D, Coord2D, or Coord3D object

...

Passed to base::mean()

Value

A Coord1D, Coord2D, or Coord3D class object of length one

Examples

p <- as_coord2d(x = 1:4, y = 1:4)
print(mean(p))
print(sum(p) / length(p)) # less efficient alternative

p <- as_coord3d(x = 1:4, y = 1:4, z = 1:4)
print(mean(p))

Compute 2D convex hulls

Description

convex_hull2d() is a S3 generic for computing the convex hull of an object. There is an implemented method supporting Coord2D class objects using grDevices::chull() to compute the convex hull.

Usage

convex_hull2d(x, ...)

## S3 method for class 'Coord2D'
convex_hull2d(x, ...)

Arguments

x

An object representing object to compute convex hull of such as a Coord2D class object.

...

Further arguments passed to or from other methods.

Value

An object of same class as x representing just the subset of points on the convex hull. The method for Coord2D class objects returns these points in counter-clockwise order.

Examples

p <- as_coord2d(x = rnorm(25), y = rnorm(25))
print(convex_hull2d(p))

# Equivalent to following caculation using `grDevices::chull()`
all.equal(convex_hull2d(p),
          p[rev(grDevices::chull(as.list(p)))])

1D coordinate vector R6 Class

Description

Coord1D is an R6::R6Class() object representing two-dimensional points represented by Cartesian Coordinates.

Active bindings

xw

A two-column matrix representing the homogeneous coordinates. The first column is the "x" coordinates and the second column is all ones.

x

A numeric vector of x-coordinates.

Methods

Public methods


Method new()

Usage
Coord1D$new(xw)
Arguments
xw

A matrix with three columns representing (homogeneous) coordinates. The first column represents x coordinates and the last column is all ones. Column names should be "x" and "w".


Method print()

Usage
Coord1D$print(n = NULL, ...)
Arguments
n

Number of coordinates to print. If NULL print all of them.

...

Passed to format.default().


Method project()

Usage
Coord1D$project(point = as_point1d("origin"), ...)
Arguments
point

A Point1D object of length one representing the point you with to reflect across or project to or an object coercible to one by as_point1d(point, ...) such as "origin".

...

Passed to project1d().


Method reflect()

Usage
Coord1D$reflect(point = as_point1d("origin"), ...)
Arguments
point

A Point1D object of length one representing the point you with to reflect across or project to or an object coercible to one by as_point1d(point, ...) such as "origin".

...

Passed to reflect1d().


Method scale()

Usage
Coord1D$scale(x_scale = 1)
Arguments
x_scale

Scaling factor to apply to x coordinates


Method translate()

Usage
Coord1D$translate(x = as_coord1d(0), ...)
Arguments
x

A Coord1D object of length one or an object coercible to one by as_coord1d(x, ...).

...

Passed to as_coord1d(x, ...) if x is not a Coord1D object


Method transform()

Usage
Coord1D$transform(mat = transform1d())
Arguments
mat

A 2x2 matrix representing a post-multiplied affine transformation matrix. The last column must be equal to c(0, 1). If the last row is c(0, 1) you may need to transpose it to convert it from a pre-multiplied affine transformation matrix to a post-multiplied one. If a 1x1 matrix we'll quietly add a final column/row equal to c(0, 1).


Method clone()

The objects of this class are cloneable with this method.

Usage
Coord1D$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

p <- as_coord1d(x = rnorm(100, 2))
print(p, n = 10L)
pc <- mean(p) # Centroid
# method chained affine transformation matrices are auto-pre-multiplied
p$
  translate(-pc)$
  reflect("origin")$
  print(n = 10L)

2D coordinate vector R6 Class

Description

Coord2D is an R6::R6Class() object representing two-dimensional points represented by Cartesian Coordinates.

Active bindings

xyw

A three-column matrix representing the homogeneous coordinates. The first two columns are "x" and "y" coordinates and the third column is all ones.

x

A numeric vector of x-coordinates.

y

A numeric vector of y-coordinates.

Methods

Public methods


Method new()

Usage
Coord2D$new(xyw)
Arguments
xyw

A matrix with three columns representing (homogeneous) coordinates. The first two columns represent x and y coordinates and the last column is all ones. Column names should be "x", "y", and "w".


Method permute()

Usage
Coord2D$permute(permutation = c("xy", "yx"))
Arguments
permutation

Either "xy" (no permutation) or "yx" (permute x and y axes)


Method print()

Usage
Coord2D$print(n = NULL, ...)
Arguments
n

Number of coordinates to print. If NULL print all of them.

...

Passed to format.default().


Method project()

Usage
Coord2D$project(line = as_line2d("x-axis"), ..., scale = 0)
Arguments
line

A Line2D object of length one representing the line you with to reflect across or project to or an object coercible to one by as_line2d(line, ...) such as "x-axis" or "y-axis".

...

Passed to project2d()

scale

Oblique projection scale factor. A degenerate 0 value indicates an orthogonal projection.


Method reflect()

Usage
Coord2D$reflect(line = as_line2d("x-axis"), ...)
Arguments
line

A Line2D object of length one representing the line you with to reflect across or project to or an object coercible to one by as_line2d(line, ...) such as "x-axis" or "y-axis".

...

Passed to reflect2d().


Method rotate()

Usage
Coord2D$rotate(theta = angle(0), ...)
Arguments
theta

An angle() object of length one or an object coercible to one by as_angle(theta, ...).

...

Passed to as_angle().


Method scale()

Usage
Coord2D$scale(x_scale = 1, y_scale = x_scale)
Arguments
x_scale

Scaling factor to apply to x coordinates

y_scale

Scaling factor to apply to y coordinates


Method shear()

Usage
Coord2D$shear(xy_shear = 0, yx_shear = 0)
Arguments
xy_shear

Horizontal shear factor: x = x + xy_shear * y

yx_shear

Vertical shear factor: y = yx_shear * x + y


Method translate()

Usage
Coord2D$translate(x = as_coord2d(0, 0), ...)
Arguments
x

A Coord2D object of length one or an object coercible to one by as_coord2d(x, ...).

...

Passed to as_coord2d(x, ...) if x is not a Coord2D object


Method transform()

Usage
Coord2D$transform(mat = transform2d())
Arguments
mat

A 3x3 matrix representing a post-multiplied affine transformation matrix. The last column must be equal to c(0, 0, 1). If the last row is c(0, 0, 1) you may need to transpose it to convert it from a pre-multiplied affine transformation matrix to a post-multiplied one. If a 2x2 matrix (such as a 2x2 post-multiplied 2D rotation matrix) we'll quietly add a final column/row equal to c(0, 0, 1).


Method clone()

The objects of this class are cloneable with this method.

Usage
Coord2D$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

p <- as_coord2d(x = rnorm(100, 2), y = rnorm(100, 2))
print(p, n = 10)
pc <- mean(p) # Centroid
# method chained affine transformation matrices are auto-pre-multiplied
p$
  translate(-pc)$
  shear(x = 1, y = 0)$
  reflect("x-axis")$
  rotate(90, "degrees")$
  print(n = 10)

3D coordinate vector R6 Class

Description

Coord3D is an R6::R6Class() object representing three-dimensional points represented by Cartesian Coordinates.

Active bindings

xyzw

A four-column matrix representing the homogeneous coordinates. The first three columns are "x", "y", and "z" coordinates and the fourth column is all ones.

x

A numeric vector of x-coordinates.

y

A numeric vector of y-coordinates.

z

A numeric vector of z-coordinates.

Methods

Public methods


Method new()

Usage
Coord3D$new(xyzw)
Arguments
xyzw

A matrix with four columns representing (homogeneous) coordinates. The first three columns represent x, y, and z coordinates and the last column is all ones. Column names should be "x", "y", "z", and "w".


Method permute()

Usage
Coord3D$permute(permutation = c("xyz", "xzy", "yxz", "yzx", "zyx", "zxy"))
Arguments
permutation

Either "xyz" (no permutation), "xzy" (permute y and z axes), "yxz" (permute x and y axes), "yzx" (x becomes z, y becomes x, z becomes y), "zxy" (x becomes y, y becomes z, z becomes x), "zyx" (permute x and z axes)


Method print()

Usage
Coord3D$print(n = NULL, ...)
Arguments
n

Number of coordinates to print. If NULL print all of them.

...

Passed to format.default().


Method project()

Usage
Coord3D$project(
  plane = as_plane3d("xy-plane"),
  ...,
  scale = 0,
  alpha = angle(45, "degrees")
)
Arguments
plane

A Plane3D object of length one representing the plane you wish to reflect across or project to or an object coercible to one using as_plane3d(plane, ...) such as "xy-plane", "xz-plane", or "yz-plane".

...

Passed to project3d().

scale

Oblique projection foreshortening scale factor. A (degenerate) 0 value indicates an orthographic projection. A value of 0.5 is used by a “cabinet projection” while a value of 1.0 is used by a “cavalier projection”.

alpha

Oblique projection angle (the angle the third axis is projected going off at). An angle() object or one coercible to one with as_angle(alpha, ...). Popular angles are 45 degrees, 60 degrees, and arctangent(2) degrees.


Method reflect()

Usage
Coord3D$reflect(plane = as_plane3d("xy-plane"), ...)
Arguments
plane

A Plane3D object of length one representing the plane you wish to reflect across or project to or an object coercible to one using as_plane3d(plane, ...) such as "xy-plane", "xz-plane", or "yz-plane".

...

Passed to reflect3d().


Method rotate()

Usage
Coord3D$rotate(axis = as_coord3d("z-axis"), theta = angle(0), ...)
Arguments
axis

A Coord3D class object or one that can coerced to one by as_coord3d(axis, ...). The axis represents the axis to be rotated around.

theta

An angle() object of length one or an object coercible to one by as_angle(theta, ...).

...

Passed to rotate3d().


Method scale()

Usage
Coord3D$scale(x_scale = 1, y_scale = x_scale, z_scale = x_scale)
Arguments
x_scale

Scaling factor to apply to x coordinates

y_scale

Scaling factor to apply to y coordinates

z_scale

Scaling factor to apply to z coordinates


Method shear()

Usage
Coord3D$shear(
  xy_shear = 0,
  xz_shear = 0,
  yx_shear = 0,
  yz_shear = 0,
  zx_shear = 0,
  zy_shear = 0
)
Arguments
xy_shear

Shear factor: x = x + xy_shear * y + xz_shear * z

xz_shear

Shear factor: x = x + xy_shear * y + xz_shear * z

yx_shear

Shear factor: y = yx_shear * x + y + yz_shear * z

yz_shear

Shear factor: y = yx_shear * x + y + yz_shear * z

zx_shear

Shear factor: z = zx_shear * x + zy_shear * y + z

zy_shear

Shear factor: z = zx_shear * x + zy_shear * y + z


Method translate()

Usage
Coord3D$translate(x = as_coord3d(0, 0, 0), ...)
Arguments
x

A Coord3D object of length one or an object coercible to one by as_coord3d(x, ...).

...

Passed to as_coord3d(x, ...) if x is not a Coord3D object


Method transform()

Usage
Coord3D$transform(mat = transform3d())
Arguments
mat

A 4x4 matrix representing a post-multiplied affine transformation matrix. The last column must be equal to c(0, 0, 0, 1). If the last row is c(0, 0, 0, 1) you may need to transpose it to convert it from a pre-multiplied affine transformation matrix to a post-multiplied one. If a 3x3 matrix (such as a 3x3 post-multiplied 3D rotation matrix) we'll quietly add a final column/row equal to c(0, 0, 0, 1).


Method clone()

The objects of this class are cloneable with this method.

Usage
Coord3D$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

p <- as_coord3d(x = rnorm(100, 2), y = rnorm(100, 2), z = rnorm(100, 2))
print(p, n = 10)
pc <- mean(p) # Centroid
# method chained affine transformation matrices are auto-pre-multiplied
p$
  translate(-pc)$
  reflect("xy-plane")$
  rotate("z-axis", degrees(90))$
  print(n = 10)

Compute 3D vector cross product

Description

cross_product3d() computes the cross product of two Coord3D class vectors.

Usage

cross_product3d(x, y)

Arguments

x

A Coord3D class vector.

y

A Coord3D class vector.

Value

A Coord3D class vector

Examples

x <- as_coord3d(2, 3, 4)
y <- as_coord3d(5, 6, 7)
cross_product3d(x, y)
if (getRversion() >= "4.4.0") {
  crossprod(x, y)
}

1D Euclidean distances

Description

distance1d() computes 1D Euclidean distances.

Usage

distance1d(x, y)

Arguments

x

Either a Coord1D or Point1D class object

y

Either a Coord1D or Point1D class object

Examples

p <- as_coord1d(x = 1:4)
distance1d(p, as_coord1d(0))

2D Euclidean distances

Description

distance2d() computes 2D Euclidean distances.

Usage

distance2d(x, y)

Arguments

x

Either a Coord2D or Line2D class object

y

Either a Coord2D or Line2D class object

Examples

p <- as_coord2d(x = 1:4, y = 1:4)
distance2d(p, as_coord2d(0, 0))

3D Euclidean distances

Description

distance3d() computes 3D Euclidean distances.

Usage

distance3d(x, y)

Arguments

x

Either a Coord3D or Plane3D class object

y

Either a Coord3D or Plane3D class object

Examples

p <- as_coord3d(x = 1:4, y = 1:4, z = 1:4)
distance3d(p, as_coord3d("origin"))

Plot coordinates, points, lines, and planes

Description

plot() plots Coord1D and Coord2D class objects while points() draws Coord1D and Coord2D class objects and lines() draws Point1D and Line2D class objects to an existing plot. If the suggested ggplot2 and rgl packages are available we also register ggplot2::autolayer() methods for Coord1D, Coord2D, Point1D, and Line2D class objects and a rgl::plot3d() method for Coord3D class objects.

Usage

## S3 method for class 'Coord1D'
plot(x, ...)

## S3 method for class 'Coord1D'
points(x, ...)

## S3 method for class 'Point1D'
lines(x, ...)

## S3 method for class 'Coord2D'
plot(x, ...)

## S3 method for class 'Coord2D'
points(x, ...)

## S3 method for class 'Line2D'
lines(x, ...)

Arguments

x

A supported object to plot.

...

Passed to the underlying plot method.

Value

Used for its side effect of drawing to the graphics device.

Examples

c1 <- as_coord2d(x = 0, y = 1:10)
l <- as_line2d(a = 1, b = -1, c = 0) # y = x
c2 <- c1$clone()$reflect(l)
plot(c1, xlim = c(-1, 11), ylim = c(-1, 11),
     main = "2D reflection across a line")
lines(l)
points(c2, col = "red")

c1 <- as_coord2d(x = 1:10, y = 1:10)
l <- as_line2d(a = -1, b = 0, c = 0) # x = 0
c2 <- c1$clone()$project(l)
if (require("ggplot2", quietly = TRUE,
            include.only = c("ggplot", "autolayer", "labs"))) {
  ggplot() +
      autolayer(c1) +
      autolayer(l) +
      autolayer(c2, color = "red") +
      labs(title = "2D projection onto a line")
}

c1 <- as_coord1d(x = seq.int(-4, -1))
pt <- as_point1d(a = 1, b = 0) # x = 0
c2 <- c1$clone()$reflect(pt)
plot(c1, xlim = c(-5, 5), main = "1D reflection across a point")
lines(pt)
points(c2, col = "red")

# 3D reflection across a plane
c1 <- as_coord3d(x = 1:10, y = 1:10, z = 1:10)
pl <- as_plane3d(a = 0, b = 0, c = -1, d = 2) # z = 2
c2 <- c1$clone()$reflect(pl)
if (require("rgl", quietly = TRUE,
            include.only = c("plot3d", "planes3d", "points3d"))) {
  plot3d(c1, size = 8)
  planes3d(as.data.frame(pl), d =  pl$d, color = "grey", alpha = 0.6)
  points3d(as.data.frame(c2), col = "red", size = 8)
}

Angle vector aware inverse trigonometric functions

Description

arcsine(), arccosine(), arctangent(), arcsecant(), arccosecant(), and arccotangent() are inverse trigonometric functions that return angle() vectors with a user chosen angular unit.

Usage

arcsine(
  x,
  unit = getOption("affiner_angular_unit", "degrees"),
  tolerance = sqrt(.Machine$double.eps)
)

arccosine(
  x,
  unit = getOption("affiner_angular_unit", "degrees"),
  tolerance = sqrt(.Machine$double.eps)
)

arctangent(x, unit = getOption("affiner_angular_unit", "degrees"), y = NULL)

arcsecant(x, unit = getOption("affiner_angular_unit", "degrees"))

arccosecant(x, unit = getOption("affiner_angular_unit", "degrees"))

arccotangent(x, unit = getOption("affiner_angular_unit", "degrees"))

Arguments

x

A numeric vector

unit

A string of the desired angular unit. Supports the following strings (note we ignore any punctuation and space characters as well as any trailing s's e.g. "half turns" will be treated as equivalent to "halfturn"):

  • "deg" or "degree"

  • "half-revolution", "half-turn", or "pi-radian"

  • "gon", "grad", "grade", or "gradian"

  • "rad" or "radian"

  • "rev", "revolution", "tr", or "turn"

tolerance

If x greater than 1 (or less than -1) but is within a tolerance of 1 (or -1) then it will be treated as 1 (or -1)

y

A numeric vector or NULL. If NULL (default) we compute the 1-argument arctangent else we compute the 2-argument arctangent. For positive coordinates ⁠(x, y)⁠ then arctangent(x = y/x) == arctangent(x = x, y = y).

Value

An angle() vector

Examples

arccosine(-1, "degrees")
arcsine(0, "turns")
arctangent(0, "gradians")
arccosecant(-1, "degrees")
arcsecant(1, "degrees")
arccotangent(1, "half-turns")

# `base::atan2(y, x)` computes the angle of the vector from origin to (x, y)
as_angle(as_coord2d(x = 1, y = 1), "degrees")

Test whether an object is an angle vector

Description

is_angle() tests whether an object is an angle vector

Usage

is_angle(x)

Arguments

x

An object

Value

A logical value

Examples

a <- angle(180, "degrees")
is_angle(a)
is_angle(pi)

Test whether two objects are congruent

Description

is_congruent() is a S3 generic that tests whether two different objects are “congruent”. The is_congruent() method for angle() classes tests whether two angles are congruent.

Usage

is_congruent(x, y, ...)

## S3 method for class 'numeric'
is_congruent(x, y, ..., tolerance = sqrt(.Machine$double.eps))

## S3 method for class 'angle'
is_congruent(
  x,
  y,
  ...,
  mod_turns = TRUE,
  tolerance = sqrt(.Machine$double.eps)
)

Arguments

x, y

Two objects to test whether they are “"congruent"”.

...

Further arguments passed to or from other methods.

tolerance

Angles (coerced to half-turns) or numerics with differences smaller than tolerance will be considered “congruent”.

mod_turns

If TRUE angles that are congruent modulo full turns will be considered “congruent”.

Value

A logical vector

Examples

# Use `is_congruent()` to check if two angles are "congruent"
  a1 <- angle(180, "degrees")
  a2 <- angle(pi, "radians")
  a3 <- angle(-180, "degrees") # Only congruent modulus full turns
  a1 == a2
  isTRUE(all.equal(a1, a2))
  is_congruent(a1, a2)
  is_congruent(a1, a2, mod_turns = FALSE)
  a1 == a3
  isTRUE(all.equal(a1, a3))
  is_congruent(a1, a3)
  is_congruent(a1, a3, mod_turns = FALSE)

Test whether an object has a Coord1D class

Description

is_coord1d() tests whether an object has a "Coord1D" class

Usage

is_coord1d(x)

Arguments

x

An object

Value

A logical value

Examples

p <- as_coord1d(x = sample.int(10, 3))
is_coord1d(p)

Test whether an object has a Coord2D class

Description

is_coord2d() tests whether an object has a "Coord2D" class

Usage

is_coord2d(x)

Arguments

x

An object

Value

A logical value

Examples

p <- as_coord2d(x = sample.int(10, 3), y = sample.int(10, 3))
is_coord2d(p)

Test whether an object has a Coord3D class

Description

is_coord3d() tests whether an object has a "Coord3D" class

Usage

is_coord3d(x)

Arguments

x

An object

Value

A logical value

Examples

p <- as_coord3d(x = sample.int(10, 3),
                y = sample.int(10, 3),
                z = sample.int(10, 3))
is_coord3d(p)

Test whether an object has a Line2D class

Description

is_line2d() tests whether an object has a "Line2D" class

Usage

is_line2d(x)

Arguments

x

An object

Value

A logical value

Examples

l <- as_line2d(a = 1, b = 2, c = 3)
is_line2d(l)

Test whether an object has a Plane3D class

Description

is_plane3d() tests whether an object has a "Plane3D" class

Usage

is_plane3d(x)

Arguments

x

An object

Value

A logical value

Examples

p <- as_plane3d(a = 1, b = 2, c = 3, 4)
is_plane3d(p)

Test whether an object has a Point1D class

Description

is_point1d() tests whether an object has a "Point1D" class

Usage

is_point1d(x)

Arguments

x

An object

Value

A logical value

Examples

p <- as_point1d(a = 1, b = 5)
is_point1d(p)

Test if 1D affine transformation matrix

Description

is_transform1d() tests if object is a transform1d() affine transformation matrix

Usage

is_transform1d(x)

Arguments

x

An object

Value

A logical value

Examples

m <- transform1d(diag(2L))
is_transform1d(m)
is_transform1d(diag(2L))

Test if 2D affine transformation matrix

Description

is_transform2d() tests if object is a transform2d() affine transformation matrix

Usage

is_transform2d(x)

Arguments

x

An object

Value

A logical value

Examples

m <- transform2d(diag(3L))
is_transform2d(m)
is_transform2d(diag(3L))

Test if 3D affine transformation matrix

Description

is_transform3d() tests if object is a transform3d() affine transformation matrix

Usage

is_transform3d(x)

Arguments

x

An object

Value

A logical value

Examples

m <- transform3d(diag(4L))
is_transform3d(m)
is_transform3d(diag(4L))

Isometric cube grob

Description

isometricCube() is a grid grob function to render isometric cube faces by automatically wrapping around affineGrob().

Usage

isocubeGrob(
  top,
  right,
  left,
  gp_border = grid::gpar(col = "black", lwd = 12),
  name = NULL,
  gp = grid::gpar(),
  vp = NULL
)

grid.isocube(...)

Arguments

top

A grid grob object to use as the top side of the cube. ggplot2 objects will be coerced by ggplot2::ggplotGrob().

right

A grid grob object to use as the right side of the cube. ggplot2 objects will be coerced by ggplot2::ggplotGrob().

left

A grid grob object to use as the left side of the cube. ggplot2 objects will be coerced by ggplot2::ggplotGrob().

gp_border

A grid::gpar() object for the polygonGrob() used to draw borders around the cube faces.

name

A character identifier (for grid).

gp

A grid::gpar() object.

vp

A grid::viewport() object (or NULL).

...

Passed to isocubeGrob()

Details

Any ggplot2 objects are coerced to grobs by ggplot2::ggplotGrob(). Depending on what you'd like to do you may want to instead manually convert a ggplot2 object gg to a grob with gtable::gtable_filter(ggplot2::ggplotGrob(gg), "panel").

Not all graphics devices provided by grDevices or other R packages support the affine transformation feature introduced in R 4.2. If isTRUE(getRversion() >= '4.2.0') then the active graphics device should support this feature if isTRUE(grDevices::dev.capabilities()$transformations). In particular the following graphics devices should support the affine transformation feature:

  • R's grDevices::pdf() device

  • R's 'cairo' devices e.g. grDevices::cairo_pdf(), grDevices::png(type = 'cairo'), grDevices::svg(), grDevices::x11(type = 'cairo'), etc. If isTRUE(capabilities('cairo')) then R was compiled with support for the 'cairo' devices .

  • R's 'quartz' devices (since R 4.3.0) e.g. grDevices::quartz(), grDevices::png(type = 'quartz'), etc. If isTRUE(capabilities('aqua')) then R was compiled with support for the 'quartz' devices (generally only TRUE on macOS systems).

  • ragg's devices (since v1.3.0) e.g. ragg::agg_png(), ragg::agg_capture(), etc.

Value

A grid::gTree() (grob) object of class "isocube". As a side effect grid.isocube() draws to the active graphics device.

Examples

if (require("grid") &&
    getRversion() >= "4.2.0" &&
    isTRUE(dev.capabilities()$transformations)) {
  # Only works if active graphics device supports affine transformations
  # such as `png(type="cairo")` on R 4.2+
  grid.newpage()
  gp_text <- gpar(fontsize = 72)
  grid.isocube(top = textGrob("top", gp = gp_text),
               right = textGrob("right", gp = gp_text),
               left = textGrob("left", gp = gp_text))
}
if (require("grid") &&
    getRversion() >= "4.2.0" &&
    isTRUE(dev.capabilities()$transformations)) {
    colors <- c("#D55E00", "#009E73", "#56B4E9")
    spacings <- c(0.25, 0.2, 0.25)
    texts <- c("pkgname", "left\nface", "right\nface")
    rots <- c(45, 0, 0)
    fontsizes <- c(52, 80, 80)
    sides <- c("top", "left", "right")
    types <- gridpattern::names_polygon_tiling[c(5, 7, 9)]
    l_grobs <- list()
    grid.newpage()
    for (i in 1:3) {
        if (requireNamespace("gridpattern", quietly = TRUE)) {
            bg <- gridpattern::grid.pattern_polygon_tiling(
                       colour = "grey80",
                       fill = c(colors[i], "white"),
                       type = types[i],
                       spacing = spacings[i],
                       draw = FALSE)
        } else {
            bg <- rectGrob(gp = gpar(col = NA, fill = colors[i]))
        }
        text <- textGrob(texts[i], rot = rots[i],
                         gp = gpar(fontsize = fontsizes[i]))
        l_grobs[[sides[i]]] <- grobTree(bg, text)
    }
  grid.newpage()
  grid.isocube(top = l_grobs$top,
               right = l_grobs$right,
               left = l_grobs$left)
}
# May take more than 5 seconds on CRAN machines
if (require("aRtsy") &&
    require("grid") &&
    require("ggplot2") &&
    requireNamespace("gtable", quietly = TRUE) &&
    getRversion() >= "4.2.0" &&
    isTRUE(dev.capabilities()$transformations)
    ) {
  gg <- canvas_planet(colorPalette("lava"), threshold = 3) +
    scale_x_continuous(expand=c(0, 0)) +
    scale_y_continuous(expand=c(0, 0))
  grob <- ggplotGrob(gg)
  grob <- gtable::gtable_filter(grob, "panel") # grab just the panel
  grid.newpage()
  grid.isocube(top = grob, left = grob, right = grob,
               gp_border = grid::gpar(col = "darkorange", lwd = 12))

}

2D lines R6 Class

Description

Line2D is an R6::R6Class() object representing two-dimensional lines.

Public fields

a

Numeric vector that parameterizes the line via the equation a * x + b * y + c = 0.

b

Numeric vector that parameterizes the line via the equation a * x + b * y + c = 0.

c

Numeric vector that parameterizes the line via the equation a * x + b * y + c = 0.

Methods

Public methods


Method new()

Usage
Line2D$new(a, b, c)
Arguments
a

Numeric vector that parameterizes the line via the equation a * x + b * y + c = 0.

b

Numeric vector that parameterizes the line via the equation a * x + b * y + c = 0.

c

Numeric vector that parameterizes the line via the equation a * x + b * y + c = 0.


Method print()

Usage
Line2D$print(n = NULL, ...)
Arguments
n

Number of lines to print. If NULL print all of them.

...

Passed to format.default().


Method clone()

The objects of this class are cloneable with this method.

Usage
Line2D$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

p1 <- as_coord2d(x = 5, y = 10)
p2 <- as_coord2d(x = 7, y = 12)
theta <- degrees(45)
as_line2d(theta, p1)
as_line2d(p1, p2)

2D normal vectors

Description

normal2d() is an S3 generic that computes a 2D normal vector.

Usage

normal2d(x, ...)

## S3 method for class 'Coord2D'
normal2d(x, ..., normalize = TRUE)

## S3 method for class 'Line2D'
normal2d(x, ..., normalize = TRUE)

Arguments

x

Object to compute a 2D normal vector for such as a Line2D object.

...

Passed to or from other methods.

normalize

If TRUE coerce to a normalize vector

Value

A Coord2D (normal) vector

Examples

p <- as_coord2d(x = 2, y = 3)
  normal2d(p)
  normal2d(p, normalize = FALSE)

3D normal vectors

Description

normal3d() is an S3 generic that computes a 3D normal vector.

Usage

normal3d(x, ...)

## S3 method for class 'Coord3D'
normal3d(x, cross, ..., normalize = TRUE)

## S3 method for class 'character'
normal3d(x, ..., normalize = TRUE)

## S3 method for class 'Plane3D'
normal3d(x, ..., normalize = TRUE)

Arguments

x

Object to compute a 3D normal vector for such as a Plane3D object

...

Passed to other methods such as as_coord3d().

cross

A Coord3D vector. We'll compute the normal of x and cross by taking their cross product.

normalize

If TRUE normalize to a unit vector

Value

A Coord3D (normal) vector

Examples

normal3d("xy-plane")
normal3d(as_coord3d(2, 0, 0), cross = as_coord3d(0, 2, 0))

3D planes R6 Class

Description

Plane3D is an R6::R6Class() object representing three-dimensional planes.

Public fields

a

Numeric vector that parameterizes the plane via the equation a * x + b * y + c * z + d = 0.

b

Numeric vector that parameterizes the plane via the equation a * x + b * y + c * z + d = 0.

c

Numeric vector that parameterizes the plane via the equation a * x + b * y + c * z + d = 0.

d

Numeric vector that parameterizes the plane via the equation a * x + b * y + c * z + d = 0.

Methods

Public methods


Method new()

Usage
Plane3D$new(a, b, c, d)
Arguments
a

Numeric vector that parameterizes the plane via the equation a * x + b * y + c * z + d = 0.

b

Numeric vector that parameterizes the plane via the equation a * x + b * y + c * z + d = 0.

c

Numeric vector that parameterizes the plane via the equation a * x + b * y + c * z + d = 0.

d

Numeric vector that parameterizes the plane via the equation a * x + b * y + c * z + d = 0.


Method print()

Usage
Plane3D$print(n = NULL, ...)
Arguments
n

Number of lines to print. If NULL print all of them.

...

Passed to format.default().


Method clone()

The objects of this class are cloneable with this method.

Usage
Plane3D$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.


1D points R6 Class

Description

Point1D is an R6::R6Class() object representing one-dimensional points.

Public fields

a

Numeric vector that parameterizes the point via the equation a * x + b = 0.

b

Numeric vector that parameterizes the point via the equation a * x + b = 0.

Methods

Public methods


Method new()

Usage
Point1D$new(a, b)
Arguments
a

Numeric vector that parameterizes the line via the equation a * x + b = 0.

b

Numeric vector that parameterizes the line via the equation a * x + b = 0.


Method print()

Usage
Point1D$print(n = NULL, ...)
Arguments
n

Number of lines to print. If NULL print all of them.

...

Passed to format.default().


Method clone()

The objects of this class are cloneable with this method.

Usage
Point1D$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

p1 <- as_point1d(a = 1, b = 5)

Convert from 3D rotation matrix to axis-angle representation.

Description

rotate3d_to_AA() converts from (post-multiplied) rotation matrix to an axis-angle representation of 3D rotations.

Usage

rotate3d_to_AA(
  mat = diag(4),
  unit = getOption("affiner_angular_unit", "degrees")
)

Arguments

mat

3D rotation matrix (post-multiplied). If you have a pre-multiplied rotation matrix simply transpose it with t() to get a post-multiplied rotation matrix.

unit

A string of the desired angular unit. Supports the following strings (note we ignore any punctuation and space characters as well as any trailing s's e.g. "half turns" will be treated as equivalent to "halfturn"):

  • "deg" or "degree"

  • "half-revolution", "half-turn", or "pi-radian"

  • "gon", "grad", "grade", or "gradian"

  • "rad" or "radian"

  • "rev", "revolution", "tr", or "turn"

See Also

https://en.wikipedia.org/wiki/Axis-angle_representation for more details about the Axis-angle representation of 3D rotations. rotate3d() can be used to convert from an axis-angle representation to a rotation matrix.

Examples

# axis-angle representation of 90 degree rotation about the x-axis
 rotate3d_to_AA(rotate3d("x-axis", 90, unit = "degrees"))

 # find Axis-Angle representation of first rotating about x-axis 180 degrees
 # and then rotating about z-axis 45 degrees
 R <- rotate3d("x-axis", 180, unit = "degrees") %*%
        rotate3d("z-axis", 45, unit = "degrees")
 AA <- rotate3d_to_AA(R)

 # Can use `rotate3d()` to convert back to rotation matrix representation
 all.equal(R, do.call(rotate3d, AA))

1D affine transformation matrices

Description

transform1d(), reflect1d(), scale2d(), and translate1d() create 1D affine transformation matrix objects.

Usage

transform1d(mat = diag(2L))

project1d(point = as_point1d("origin"), ...)

reflect1d(point = as_point1d("origin"), ...)

scale1d(x_scale = 1)

translate1d(x = as_coord1d(0), ...)

Arguments

mat

A 2x2 matrix representing a post-multiplied affine transformation matrix. The last column must be equal to c(0, 1). If the last row is c(0, 1) you may need to transpose it to convert it from a pre-multiplied affine transformation matrix to a post-multiplied one. If a 1x1 matrix we'll quietly add a final column/row equal to c(0, 1).

point

A Point1D object of length one representing the point you with to reflect across or project to or an object coercible to one by as_point1d(point, ...) such as "origin".

...

Passed to as_coord1d().

x_scale

Scaling factor to apply to x coordinates

x

A Coord1D object of length one or an object coercible to one by as_coord1d(x, ...).

Details

transform1d()

User supplied (post-multiplied) affine transformation matrix

.

reflect1d()

Reflections across a point.

scale1d()

Scale the x-coordinates by multiplicative scale factors.

translate1d()

Translate the coordinates by a Coord1D class object parameter.

transform1d() 1D affine transformation matrix objects are meant to be post-multiplied and therefore should not be multiplied in reverse order. Note the Coord1D class object methods auto-pre-multiply affine transformations when "method chaining" so pre-multiplying affine transformation matrices to do a single cumulative transformation instead of a method chain of multiple transformations will not improve performance as much as as it does in other R packages.

To convert a pre-multiplied 1D affine transformation matrix to a post-multiplied one simply compute its transpose using t(). To get an inverse transformation matrix from an existing transformation matrix that does the opposite transformations simply compute its inverse using solve().

Value

A 2x2 post-multiplied affine transformation matrix with classes "transform1d" and "at_matrix"

Examples

p <- as_coord1d(x = sample(1:10, 3))

# {affiner} affine transformation matrices are post-multiplied
# and therefore should **not** go in reverse order
mat <- transform1d(diag(2)) %*%
         scale1d(2) %*%
         translate1d(x = -1)
p1 <- p$
  clone()$
  transform(mat)

# The equivalent result appyling affine transformations via method chaining
p2 <- p$
  clone()$
  transform(diag(2))$
  scale(2)$
  translate(x = -1)

all.equal(p1, p2)

2D affine transformation matrices

Description

transform2d(), project2d(), reflect2d(), rotate2d(), scale2d(), shear2d(), and translate2d() create 2D affine transformation matrix objects.

Usage

transform2d(mat = diag(3L))

permute2d(permutation = c("xy", "yx"))

project2d(line = as_line2d("x-axis"), ..., scale = 0)

reflect2d(line = as_line2d("x-axis"), ...)

rotate2d(theta = angle(0), ...)

scale2d(x_scale = 1, y_scale = x_scale)

shear2d(xy_shear = 0, yx_shear = 0)

translate2d(x = as_coord2d(0, 0), ...)

Arguments

mat

A 3x3 matrix representing a post-multiplied affine transformation matrix. The last column must be equal to c(0, 0, 1). If the last row is c(0, 0, 1) you may need to transpose it to convert it from a pre-multiplied affine transformation matrix to a post-multiplied one. If a 2x2 matrix (such as a 2x2 post-multiplied 2D rotation matrix) we'll quietly add a final column/row equal to c(0, 0, 1).

permutation

Either "xy" (no permutation) or "yx" (permute x and y axes)

line

A Line2D object of length one representing the line you with to reflect across or project to or an object coercible to one by as_line2d(line, ...) such as "x-axis" or "y-axis".

...

Passed to as_angle() or as_coord2d().

scale

Oblique projection scale factor. A degenerate 0 value indicates an orthogonal projection.

theta

An angle() object of length one or an object coercible to one by as_angle(theta, ...).

x_scale

Scaling factor to apply to x coordinates

y_scale

Scaling factor to apply to y coordinates

xy_shear

Horizontal shear factor: x = x + xy_shear * y

yx_shear

Vertical shear factor: y = yx_shear * x + y

x

A Coord2D object of length one or an object coercible to one by as_coord2d(x, ...).

Details

transform2d()

User supplied (post-multiplied) affine transformation matrix

.

project2d()

Oblique vector projections onto a line parameterized by an oblique projection scale factor. A (degenerate) scale factor of zero results in an orthogonal projection.

reflect2d()

Reflections across a line. To "flip" across both the x-axis and the y-axis use scale2d(-1).

rotate2d()

Rotations around the origin parameterized by an angle().

scale2d()

Scale the x-coordinates and/or the y-coordinates by multiplicative scale factors.

shear2d()

Shear the x-coordinates and/or the y-coordinates using shear factors.

translate2d()

Translate the coordinates by a Coord2D class object parameter.

transform2d() 2D affine transformation matrix objects are meant to be post-multiplied and therefore should not be multiplied in reverse order. Note the Coord2D class object methods auto-pre-multiply affine transformations when "method chaining" so pre-multiplying affine transformation matrices to do a single cumulative transformation instead of a method chain of multiple transformations will not improve performance as much as as it does in other R packages.

To convert a pre-multiplied 2D affine transformation matrix to a post-multiplied one simply compute its transpose using t(). To get an inverse transformation matrix from an existing transformation matrix that does the opposite transformations simply compute its inverse using solve().

Value

A 3x3 post-multiplied affine transformation matrix with classes "transform2d" and "at_matrix"

Examples

p <- as_coord2d(x = sample(1:10, 3), y = sample(1:10, 3))

# {affiner} affine transformation matrices are post-multiplied
# and therefore should **not** go in reverse order
mat <- transform2d(diag(3)) %*%
         reflect2d(as_coord2d(-1, 1)) %*%
         rotate2d(90, "degrees") %*%
         scale2d(1, 2) %*%
         shear2d(0.5, 0.5) %*%
         translate2d(x = -1, y = -1)
p1 <- p$
  clone()$
  transform(mat)

# The equivalent result appyling affine transformations via method chaining
p2 <- p$
  clone()$
  transform(diag(3L))$
  reflect(as_coord2d(-1, 1))$
  rotate(90, "degrees")$
  scale(1, 2)$
  shear(0.5, 0.5)$
  translate(x = -1, y = -1)

all.equal(p1, p2)

3D affine transformation matrices

Description

transform3d(), project3d(), reflect3d(), rotate3d(), scale3d(), shear3d(), and translate3d() create 3D affine transformation matrix objects.

Usage

transform3d(mat = diag(4L))

permute3d(permutation = c("xyz", "xzy", "yxz", "yzx", "zyx", "zxy"))

project3d(
  plane = as_plane3d("xy-plane"),
  ...,
  scale = 0,
  alpha = angle(45, "degrees")
)

reflect3d(plane = as_plane3d("xy-plane"), ...)

rotate3d(axis = as_coord3d("z-axis"), theta = angle(0), ...)

scale3d(x_scale = 1, y_scale = x_scale, z_scale = x_scale)

shear3d(
  xy_shear = 0,
  xz_shear = 0,
  yx_shear = 0,
  yz_shear = 0,
  zx_shear = 0,
  zy_shear = 0
)

translate3d(x = as_coord3d(0, 0, 0), ...)

Arguments

mat

A 4x4 matrix representing a post-multiplied affine transformation matrix. The last column must be equal to c(0, 0, 0, 1). If the last row is c(0, 0, 0, 1) you may need to transpose it to convert it from a pre-multiplied affine transformation matrix to a post-multiplied one. If a 3x3 matrix (such as a 3x3 post-multiplied 3D rotation matrix) we'll quietly add a final column/row equal to c(0, 0, 0, 1).

permutation

Either "xyz" (no permutation), "xzy" (permute y and z axes), "yxz" (permute x and y axes), "yzx" (x becomes z, y becomes x, z becomes y), "zxy" (x becomes y, y becomes z, z becomes x), "zyx" (permute x and z axes)

plane

A Plane3D object of length one representing the plane you wish to reflect across or project to or an object coercible to one using as_plane3d(plane, ...) such as "xy-plane", "xz-plane", or "yz-plane".

...

Passed to as_angle() or as_coord3d().

scale

Oblique projection foreshortening scale factor. A (degenerate) 0 value indicates an orthographic projection. A value of 0.5 is used by a “cabinet projection” while a value of 1.0 is used by a “cavalier projection”.

alpha

Oblique projection angle (the angle the third axis is projected going off at). An angle() object or one coercible to one with as_angle(alpha, ...). Popular angles are 45 degrees, 60 degrees, and arctangent(2) degrees.

axis

A Coord3D class object or one that can coerced to one by as_coord3d(axis, ...). The axis represents the axis to be rotated around.

theta

An angle() object of length one or an object coercible to one by as_angle(theta, ...).

x_scale

Scaling factor to apply to x coordinates

y_scale

Scaling factor to apply to y coordinates

z_scale

Scaling factor to apply to z coordinates

xy_shear

Shear factor: x = x + xy_shear * y + xz_shear * z

xz_shear

Shear factor: x = x + xy_shear * y + xz_shear * z

yx_shear

Shear factor: y = yx_shear * x + y + yz_shear * z

yz_shear

Shear factor: y = yx_shear * x + y + yz_shear * z

zx_shear

Shear factor: z = zx_shear * x + zy_shear * y + z

zy_shear

Shear factor: z = zx_shear * x + zy_shear * y + z

x

A Coord3D object of length one or an object coercible to one by as_coord3d(x, ...).

Details

transform3d()

User supplied (post-multiplied) affine transformation matrix

.

scale3d()

Scale the x-coordinates and/or the y-coordinates and/or the z-coordinates by multiplicative scale factors.

shear3d()

Shear the x-coordinates and/or the y-coordinates and/or the z-coordinates using shear factors.

translate3d()

Translate the coordinates by a Coord3D class object parameter.

transform3d() 3D affine transformation matrix objects are meant to be post-multiplied and therefore should not be multiplied in reverse order. Note the Coord3D class object methods auto-pre-multiply affine transformations when "method chaining" so pre-multiplying affine transformation matrices to do a single cumulative transformation instead of a method chain of multiple transformations will not improve performance as much as as it does in other R packages.

To convert a pre-multiplied 3D affine transformation matrix to a post-multiplied one simply compute its transpose using t(). To get an inverse transformation matrix from an existing transformation matrix that does the opposite transformations simply compute its inverse using solve().

Value

A 4x4 post-multiplied affine transformation matrix with classes "transform3d" and "at_matrix"

Examples

p <- as_coord3d(x = sample(1:10, 3), y = sample(1:10, 3), z = sample(1:10, 3))

# {affiner} affine transformation matrices are post-multiplied
# and therefore should **not** go in reverse order
mat <- transform3d(diag(4L)) %*%
         rotate3d("z-axis", degrees(90)) %*%
         scale3d(1, 2, 1) %*%
         translate3d(x = -1, y = -1, z = -1)
p1 <- p$
  clone()$
  transform(mat)

# The equivalent result appyling affine transformations via method chaining
p2 <- p$
  clone()$
  transform(diag(4L))$
  rotate("z-axis", degrees(90))$
  scale(1, 2, 1)$
  translate(x = -1, y = -1, z = -1)

all.equal(p1, p2)

Angle vector aware trigonometric functions

Description

sine(), cosine(), tangent(), secant(), cosecant(), and cotangent() are angle() aware trigonometric functions that allow for a user chosen angular unit.

Usage

sine(x, unit = getOption("affiner_angular_unit", "degrees"))

cosine(x, unit = getOption("affiner_angular_unit", "degrees"))

tangent(x, unit = getOption("affiner_angular_unit", "degrees"))

secant(x, unit = getOption("affiner_angular_unit", "degrees"))

cosecant(x, unit = getOption("affiner_angular_unit", "degrees"))

cotangent(x, unit = getOption("affiner_angular_unit", "degrees"))

Arguments

x

An angle vector or an object to convert to it (such as a numeric vector)

unit

A string of the desired angular unit. Supports the following strings (note we ignore any punctuation and space characters as well as any trailing s's e.g. "half turns" will be treated as equivalent to "halfturn"):

  • "deg" or "degree"

  • "half-revolution", "half-turn", or "pi-radian"

  • "gon", "grad", "grade", or "gradian"

  • "rad" or "radian"

  • "rev", "revolution", "tr", or "turn"

Value

A numeric vector

Examples

sine(pi, "radians")
cosine(180, "degrees")
tangent(0.5, "turns")

a <- angle(0.5, "turns")
secant(a)
cosecant(a)
cotangent(a)